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AN EFFICIENT ALGORITHM USING MATRIX METHODS TO SOLVE
WIND-TUNNEL FORCE-BALANCE EQUATIONS"

By David L. Smith
Langley Research Center

SUMMARY

An iterative procedure applying matrix methods to accomplish an efficient algorithm
for automatic computer reduction of wind-tunnel force-balance data has been developed.
Balance equations are expressed in a matrix form that is convenient for storing balance
sensitivities and interaction coefficient values for online or offline batch data reduction.
The convergence of the iterative values to a unique solution of this system of equations
is investigated, and it is shown that for balances which satisfy the criteria discussed,
this type of solution does occur. Methods for making sensitivity adjustments and initial
load effect considerations in wind-tunnel applications are also discussed, and the logic
for determining the convergence accuracy limits for the iterative solution is given.

This more efficient data reduction program is compared with the technique pres-
ently in use at the NASA Langley Research Center, and computational times on the order
of one-third or less are demonstrated by use of this new program.

INTRODUCTION

Since aircraft and space vehicle motions depend on the forces and moments about
the three orthogonal body axes, an extensive amount of wind-tunnel testing is devoted to
measuring these quantities for given model configurations to enable the estimation of
aerodynamic loads on full-scale vehicles in flight. The most commonly used method for
measuring these forces and moments is by installing an internal strain-gage balance
within a wind-tunnel model as illustrated in figure 1. The model is attached to this bal-
ance and the forces and moments about the axes shown in figure 2 are transduced into
electrical signals suitable for analog-to-digital conversion and subsequent data reduction
or online evaluation where such equipment exists.

*The information presented herein is largely based on a thesis entitled "The Appli-
cation of Matrix Methods to Solving Wind-Tunnel Force-Balance Equations' submitted by
the author to the Faculty of the School of Engineering and Applied Science of George
Washington University in partial satisfaction of the requirements for the degree of
Master of Science, December 1971.
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Figure 1.- Typical installation of internal strain-gage balance in
a wind-tunnel model.
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Figure 2.- Force and moment axes with positive Aircctions shown.



The pur‘pose of this investigation is to apply matrix methods to the force-balance
equations in order to develop an efficient data reduction program which offers signifi-
cantly fewer arithmetic operations and smaller computational times per data point. This
program uses an iterative procedure to account for balance interactions and considers
required sensitivity adjustments and initial load effects. A description of the balance
data reduction is given and a technique is presented for determining from calibration
data whether the iterative procedure will converge. The technique presently in use at
the Langley Research Center is presented in appendix A.

SYMBOLS

Measurements are given in both SI and U.S. Customary Units. The measurements
and calculations were made in U.S. Customary Units. The force and moment axes
usually coincide with the body axes of a wind-tunnel model as shown in figure 2.

c element of matrix M

F A axial force

FN normal force

FY side force

f generalized force or moment function
J upper bound for Lipschitz' constant
K normalized coefficient

k calibration coefficient

MX rolling moment

MY pitching moment

MZ yawing moment

X generalized force or moment component
o angle of attack



€ nonlinear interaction correction

6 meter indication

K sensitivity

Matrices:

B positive full-scale balance design loads matrix (6 x 1)
Cyq first-order coefficient matrix (6 x 6)

Cqy nonlinear interaction coefficient matrix (6 x 21)
E second-order interaction column matrix (6 X 1)
F force and moment column matrix (6 x 1)

X sensitivity diagonal matrix (6 x 6)

M matrix product of C1'1C2, (6 x21)

P force and moment product matrix (21 x 1)

(¢S] output column matrix (6 x 1)

Subscripts:

i force or moment component considered

j interacting load (see table I)

k data point specified

max maximum value

min minimum value

n number of iteration



0 initial load effect
u uncorrected value
DEVELOPMENT OF MATRIX RELATIONS

Background for Analysis

Ideally, the output for each force or moment component measured by a balance
should be affected only by a loading on that particular component. Experience shows,
however, that a given component is often affected by loading another component. This
effect is called an "interaction.” Interactions are classified as either linear or non-
linear, depending on whether they are related to a single component's load or to exponen-
tial powers and combinations of the components being loaded. Linear interactions result
from machining tolerances, strain-gage positioning tolerances, variations in strain-gage
properties, electrical circuitry, or Poisson's effect. Nonlinear interactions are attrib-
uted to deflections of the strain-gage beams (ref. 1).

Consider the general case of a balance designed to measure three perpendicular
forces and three moments about the axes of these forces. The output of each component
is a function of all six forces and moments due to presence of interactions and can be
expressed as a polynomial of the form (ref. 2):

2
6 —k1 1F + k. 2FA+k 3MY+ . ‘+ki,6FY+ki,7FN +ki,8FNFA

4k gF My + - -+ ki,27FY2 + ki’stN:a + ki’ngNzFA o, 1)
The linear interaction coefficients for this case would be k1 1 1 91 ki g Or the
coefficients of the first-order terms of equation (1), except for the k1 i whlch is the
inverse of the ith component's sensitivity. Nonlinear interaction coefficients would be
ki,7’ ki,8’ . . ., or coefficients of second degree and higher order terms. In practice,
third and higher order interaction terms are negligible, and second-order terms are
generally small compared to the linear terms. (See refs. 1 and 2.)

To facilitate force-balance data reduction, equation (1) is divided through by k; ;
’
or "'normalized," with third and higher order terms neglected, yielding (ref. 2):

(Xi)u = Ki,lFN + Ki,ZFA + K, 3MY .+ Ki,6FY

+K1.7 N +KL8F F +K1 QFNMY+‘ . '+Ki,27FY (2a)



where

k. .
K; ;= L] = Normalized interaction coefficients when i # j

i,i
with
Kij= 1 ith component sensitivity when 1= j
S 5§
and

(Xi) = Ky iei = Uncorrected force or moment on ith component
u ’

For a typical balance load, for example, normal force, (Xi)u = (FN) and
u

k
K1 1= 1,1 1 which results in the following form of equation (2):

ki1

Fy = (FN)u - (KI’ZFA +Ky gMy + ...+ K oFy

2 2
+ Ky qF® + Ky gF\(Fp + Ky gFiMy + ..o+ Ky 50 Fy ) (2b)

In this form the interaction coefficients are expressed in terms of the apparent load on
the ith component per unit of the jth loading.

Assumptions

In order to solve the system of six force-balance equations represented by equa-
tions (2) for the aerodynamic loads acting on a wind-tunnel model, the interaction coef-
ficients and sensitivity constants used in acquiring the data must be known. It will be
assumed that these constants are available from the calibration of the balance, and that
the sensitivities have been adjusted to the actual values in the tunnel installation. It will
also be assumed that there are no initial load effects to account for at this time. Methods
for including both the balance sensitivity adjustments and the initial load effects will be
considered under a subsequent heading.

Matrix Relations

By defining the following matrices, equation (2a) can be expressed as a matrix
relation where the subscripts denote the loads indicated in table I:



TABLE I.- LOAD CORRESPONDING TO A GIVEN SUBSCRIPT

Load denoted by Load denoted by
Load subscript — Load subscript —
Fy 1 F AMX 15
Fp 2 F AMZ 16
MY 3 F Fy 17
2
My 4 MY 18
M, 5 MYMX 19
FY 6 MYMZ 20
2
Fy 7 MYFY 21
2
FyFa 8 MX 22
FNMY 9 MXM 7 23
FNMX 10 MXFY 24
2
FNMZ 11 MZ 25
FNFY 12 MZFY 26
2 2
Fy 13 FY 27
F AMY 14
The output column matrix:
o1
%
o= =[9i] i=1,2, ... 6)




The force and moment column matrix:

~

F

The second-order force and moment product column matrix:

— -
2
Fy
FNFa
F\yM
p= NY:[xix] i=1,2,...,86 )
. ) j=i,i+1, ..., 6
2
F
LY
The 6 X 6 sensitivity diagonal matrix
K11 0 0 0 0 0
0 *2,2 0 0 0 0
0 0 33 0 0 0
X =
0 0 0 K44 0 0
0 0 0 0 K5’5 0
0 0 0 0 0 Kg 6




The 6 X 6 first-order interaction coefficient matrix:

— ]
1 Kj9 Ki3 Ky K5 Kig
K1 1 K3 Ky Kis K

C1= 13,1

Ke1 Keo K3 Kea Keps

The 6 X 21 second-order interaction coefficient matrix:

Kin XKy Kig -+ Kpo7
o %21 Ko Fopo
5=

Ken Keg Ko -+ XKgon

—

By use of these matrices, the six equations represented by equation (2) can be expressed
as follows:

X0 = C,F + C,P (3)

By use of matrix algebra (ref. 3), equation (3) is readily solved for F by subtracting
C2P from each side and premultiplying each term by the matrix inverse of C1 to
obtain

_ -1 -1
F—Cl KO'CI

CZP 4)
In this form, equation (4) is very convenient for using iterative procedures to solve

for F, or the forces and moments acting on the model. An iterative procedure is the
most practical method of solving this equation because the second-order interaction cor-
rections C1'1C2P are functions of the elements of F.

Since the previously defined coefficient matrices are made up of constants deter-
mined from calibration data, Cl'1 and the product of Cl'IC2 can be calculated and
stored in this form for subsequent data reduction. Also, if a balance is designed to mea-
sure less than six components, the coefficient matrices can be accordingly reduced in
size before these calculations are made. Carrying out these steps prior to actually
reducing tunnel data greatly increases the efficiency of the data reduction program.



Iterative Procedures

Upon examination, equation (4) tends to appear cumbersome or awkward to solve
iteratively as each term on the right-hand side is a product of three matrices. Further
examination shows this is not the case; actually, it is in a rather convenient form for the
data reduction program. The product ZX©, or the engineering unit conversion, is cal-
culated prior to the iteration stage of the data reduction and is called the "‘uncorrected"
load, F,. Also, the product of C1'1C2 is calculated from the calibration data and is
stored as a 6 X 21 matrix, M. Consequently, equation (6) can be expressed as follows:

F=c, lF, - MP (5)

For a given data point @y, F,= Cl‘lFu is directly calculable and is a very good
approximation of F since F1 contains all first-order interaction corrections and
because of the relatively small effects of second-order balance interactions. For this
reason, the elements of F, are used as the values of the forces and moments necessary
for calculating the elements of the first approximation of the second-order matrix. Note
that F1 = C1'1K1® is dependent only on calibration constants and on the meter indica-
tions for the particular data point being reduced. These linear terms are directly cal-
culated and require no iterating for their evaluation. Only the second-order interaction
terms are iterated until the procedure converges.

Iteration of the second-order terms is accomplished as follows: The first approx-
imation of the second-order matrix P1 is premultiplied by M and generates the
second-order interaction correction matrix El' The absolute value of each E; ele-
ment 'eil is then compared with the required accuracy of convergence for each balance
component. If each lei| is less than the given convergence limit, which can be speci-
fied or is calculated based on the balance sensitivities, the data reduction is complete
for that data point with F = Fy - MPl. However, if one or more of the Iei' is greater
than these convergence accuracies, equation (5) is reiterated as follows:

-1
Fo - Ep1 (6)

The quantity F, is then used to reevaluate P, which is again premultipliedby M to
determine more nearly exact values of the second-order balance interactions E,. The
column matrix E, is then compared with En-l and if corresponding elements agree
to within the convergence limits, the force and moment matrix may be expressed as

-1
F=C; 'F, -E, (1)

Equation (8) is reiterated until convergence occurs.
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Convergence

In any iterative solution such as the one described, certain questions must be con-
sidered such as whether F, will always converge, and whether its limit is a unique
solution of the given equations. Henrici (ref. 4) considers these questions for the general
case of iterating systems of nonlinear equations. A criterion for proving that equation (5)
will converge is given and discussed in appendix B. Theorems given therein not only
prove that this iterative procedure will converge but also show that successive iterations
approach a unique solution in the region of the design loads for balances which satisfy the
given conditions and have an upper bound for Lipschitz' constant J of less than 1
where

of, 2 [of, of, \2 otg \2
J = max 7= tlep ) * +— 1 + + | — (1
FeR N Fp oX; IFy j

A computer subroutine program which calculates the value of J is given in appendix B.

B DN
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Pt et

CONSIDERATIONS FOR REDUCING BALANCE DATA

Sensitivity Adjustments

The reduction of force-balance data requires each force and moment component
calibration sensitivity to be adjusted to the actual values for the wind-tunnel installation.
To accomplish this sensitivity adjustment, the same apparent loading is applied to each
component at the calibration facility and at the wind-tunnel installation. The ratio of the
output at calibration to the output at the tunnel installation for this common apparent
load is then multiplied by the corresponding calibration sensitivity and yields the tunnel
sensitivity as follows:

8 . .
Ks = (K. . calibration
( l’l)tunnel E 1’1)calibratiorJ <—_—> (9)

Qtunnel

An efficient method for making this sensitivity adjustment is to store the calibration sen-
sitivities and apparent load outputs with the balance interaction coefficient values. Then,
adjusted tunnel sensitivities can readily be computed and assigned to the proper locations
in the # matrix by supplying balance output values for the same apparent load in the
tunnel installation, and performing the indicated ratios in the data reduction program.

11



Initial Loads

Another important consideration in force-balance data reduction stems from the
fact that the balance equations (2) are nonlinear. For this reason, tunnel data must be
related to the same origin as calibration data, or zero output for zero loads on all com-
ponents, as shown by the solid line in figure 3. Typically, meter readings at wind-off
zero-angle-of-attack conditions are taken as the zero load values or as the origin of the
data. However, initial loads such as model weight cause the balance output to be located
off the calibration origin, for example, at point A in figure 3 where the prime indicates
the tunnel axis system. Ignoring initial load effects is essentially the same as assuming
that the balance is performing according to the dashed curve or the calibration curve
shifted to the new origin. The balance is actually performing according to the solid cal-
ibration curve. Therefore, the data origin must be shifted to correspond with the cali-
bration origin for each data point.

0
9V
N

~N

Calibration output,
Tunnel output,
AN

7 A Tunnel load, X'

-~ 0 Calibration load, X

Figure 53.- Initial load effect on balance output.
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A convenient method for reducing balance data with initial loads is to translate the
axes to the system used for calibration, eliminate balance interaction effects, and then
translate the axes back to the set used in acquiring the data. Note in figure 3, that 6,
and X, are determined prior to taking aerodynamic data, and ¢' is recorded for each
data point during a wind-tunnel test. This observation suggests the following axes
translation:

=6+ 0, (10)

Substituting this value into the balance equation allows the calculation of X, from which
X' is readily determined by the following translation back to the primed axes:

X'=X-X, (11)

This method is readily extended for a six-component balance as shown in the following

matrix relations:
0=0"+ Oo (12)

This output matrix is then substituted into equation (5) and is solved iteratively as
described for F, from which

F'=F - F, (13)

This method of translating axes to include initial load corrections in balance data reduc-
tion has been used with the iterative procedure discussed previously. The only arithmetic
operations required for these axes transfers are six additions before iterating the balance
equations, and six subtractions following the iterations.

An alternate method for considering initial loads by reevaluating balance interaction
coefficients to account for these axes translations is described in reference 5.

Convergence Limits

For any iterative solution, an accuracy or convergence limit must be specified.
This limit can be an absolute value, as presently used with balance data at Langley, a
percentage of the solution itself, a percentage of the maximum range of the solution, or a
percentage of the resolution of the data acquisition system. Because of the limitation of
the recording system resolution, the minimum detectable increment of each component is

equal to its sensitivity times 1 count, or

13



(8% ) min = %30 X 1= % 4 (14)

Consequently, the convergence limit of one-tenth the value of this minimum detectable

increment, or kj 1/10, for each force and moment component is used in this data reduc-
b

tion program. This criterion will cause to be negligible any systematic errors that may

result because of the convergence accuracy.

Data Reduction Program

The iterative procedure and other related topics that must be considered for balance
data reduction have been utilized in developing a FORTRAN program for the Control Data
6600 digital computer complex at the Langley Research Center. This program is listed
and described in appendix C.

COMPARISON OF PRESENT DATA REDUCTION METHOD
WITH MATRIX METHODS

Logic

The logic of the matrix method developed in this paper and of the technique pres-
ently in use at the Langley Research Center (appendix A) is very similar in many ways.
Both methods apply an iterative solution of the form

Fn=1(Fy_4) (15)

where { denotes a column vector. (See appendix B.) The presently used method iter-
ates each force and moment component individually and updates or recalculates the
second-order products between each component's iteration. The matrix method, however,
iterates the column matrix Fj or updates all force and moment components before the
second-order product matrix is recalculated. Also, the first approximation of these two
methods is determined differently. The present method uses the products of the sensitiv-
ities times the balance outputs or Ki,igi and iterates both first- and second-order
interaction terms, but the matrix method uses Cl'17<9 as the first approximation and
consequently must iterate only the second-order terms.

Computation Time Requirements

Because of the differences described, the number of arithmetic operations required
per data point by using the matrix method is considerably reduced and, as a result, corre-
sponding decreases in the computation time for each data point are obtained. Table II
gives a comparison of the deviation of the first approximation iterated in the balance

14



equations for the two methods. These values are significantly closer to the calculated
solutions for each balance component in the matrix method. Consequently, fewer itera-
tions are required for the data points in using the matrix method as shown in three of the
four cases presented in tables III and IV. There are also significant differences in the
number of arithmetic operations for the two methods due not only to the few iterations
but also to the facts that load combinations are updated after iterating all components and
only second-order terms must be iterated by using the matrix method. This reduction
in the number of arithmetic operations results in computation times on the order of one-
third or less for the matrix method over the present technique. Table V shows consid-
erable reductions in the number of arithmetic operations and computation times even
when both methods are driven through the same number of iterations. These observations
are especially noticeable for balances with less than six components because of the
"collapsing' of the coefficient and data matrices as discussed previously. The matrix
method is thereby significantly more efficient than the present technique in which the
coefficients for components not measured are set equal to zero and the arithmetic oper-
ations are performed for all components and, as a result, there is the same number of
calculations per iteration for any number of measured force and moment components.

TABLE II.- DEVIATION OF FIRST APPROXIMATION FROM SOLUTION
FOR BOTH METHODS OF DATA REDUCTION

. . . Deviation of

Converged First a%gﬁﬁzglsmatmn approximation from

Balance iterati%e iterative solution

component solution . .
Present Matrix Present Matrix
method method method method
FN,N ) ..... 350.5 (78.8)|343.0 (77.1)| 350.1 (78.7)| 7.5 (1.7)| 0.4 (0.1)
FA,N b)) ..... 53.8 (12.1)| 67.6 (15.2)| 55.6 (12.5)]13.8 (3.1)| 1.8 (0.4)
MY’ N-m (in-1b) . .| 10.1 (89.6) 9.3 (82.0)| 10.0 (88.9)| 0.8 (7.6)] 0.1 (0.7)
MX’ N-m (in-1b) . .| 3.03 (26.8)| 3.17 (28.1)| 3.03 (26.8)]0.14 (1.3) 0 (0)
MZ’ N-m (in-1b) . .| 5.65 (50.0)| 5.62 (49.7)| 5.74 (50.8)|0.03 (0.3)0.09 (0.8)
FY,N ) ..... 130 (29.2) 166 (37.3) 131 (29.4) 36 (8.1) 1 (0.2)
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TABLE III.- COMPARISON OF MATRIX METHOD WITH PRESENT TECHNIQUE
FOR TYPICAL DATA WITH NO INITIAL LOAD TRANSLATIONS

Approximate
Number of number of Time required for
Ngggﬁg eOf iterations arithmetic iterations, msec
components operations
reduced Present Matrix Present Matrix Present Matrix
method method method method method method
3 6 4 1728 105 16 2
4 3 864 166 12 2
5 3 2 864 205 10 4
6 5 2 1440 330 18 6

TABLE IV.- COMPARISON OF MATRIX METHOD WITH PRESENT
TECHNIQUE FOR TYPICAL DATA WITH INITIAL

LOAD TRANSLATIONS REQUIRED

Approximate
Number of number of Time required for
Ngg{gﬁz eOf iterations arithmetic iterations, msec
components operations

reduced Present Matrix Present Matrix Present Matrix
method method method method method method

3 6 4 1740 111 16 4

4 3 3 876 174 12 4

b 3 2 876 215 12 4

6 5 2 1452 342 18 4




TABLE V.- COMPARISON OF MATRIX METHOD WITH PRESENT
TECHNIQUE FOR TYPICAL DATA POINTS WITH THE SAME
NUMBER OF ITERATIONS FOR BOTH METHODS

Approximate
Number of Number of number of Time required for
balance iterations arithmetic iterations, msec
components operations
reduced Present Matrix Present Matrix Present Matrix
method method method method method method
3 7 7 2016 171 18 4
4 4 4 1152 208 12 4
5 3 3 864 295 10 6
6 4 4 1152 612 14 8

CONCLUDING REMARKS

The reduction of wind-tunnel force-balance data by applying matrix methods to an
iterative solution of the balance equations has been presented, and it has been demon-
strated that this method is a significant improvement over the presently used method at
Langley Research Center. The convergence of this iterative solution was considered,
and it was shown that for balance equations which satisfy the conditions specified, this
method would converge to a unique solution within the range of the design loads of the
balance. A technique was also presented to determine whether the balance equations
satisfy these conditions based on the calibration data for the balance. Considerations of
sensitivity adjustments and initial load effects were discussed and methods for making
these corrections were given.

This matrix method has been developed with the assumption that the third and
higher order balance interactions are negligible. If the case arises in which such inter-
actions must be considered, this calculation can be readily accomplished with these
methods by adding the load combination(s) which produce the third or higher order inter-
action to the force and moment product column matrix and including the appropriate
coefficients on each row of the nonlinear interaction coefficient matrix. These changes
would, of course, necessitate changing the dimensions of these arrays in the computer
programs given herein.

17



The efficiency of this force-balance data reduction algorithm resulting from
applying matrix methods makes it particularly useful for real-time display and control
calculations by smaller online computers as well as beneficial for offline batch data
reduction subsequent to the wind-tunnel test runs. Computational times of one-third or

less than those required for the presently used technique are demonstrated by this matrix
methods algorithm.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., June 7, 1972,
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APPENDIX A
A PRESENT METHOD OF FORCE-BALANCE DATA REDUCTION

The present method used to reduce force-balance data at the Langley Research
Center involves an iterative solution of the six balance equations represented as follows:

(Xi)u =K (Fy+ Ky gFp+ Kj gMy + ...+ K; 6Fy

2
+ Ig’.?FN + Ki,BFNFA + Ki,QFNMY + ...+ Ki,27FY

2 (A1)

To solve these equations, the calibration sensitivity and all first- and second-order inter-
action coefficients must be known for each force and moment component.

After each force and moment component calibration sensitivity is adjusted to its
actual value for the wind-tunnel installation, data reduction is accomplished through use
of a computer subroutine program based on iterating equation (Al). The first approxi-
mation of each force and moment is obtained from

(Xi)y = 4,16 (A2)
where the prime indicates that the tunnel sensitivity adjustment has been made. These
first approximations of the aerodynamic loads are added to the initial load values and
then substituted into equation (A1) to calculate a first approximate value of the interaction
correction for each force and moment component. These correction values and the initial
loads are then subtracted from the approximations of equation (A2), and the results become
the second approximations of the aerodynamic loads. These second approximations are
then added to the initial loads and reiterated into equation (A1), from which a second
approximation to the interaction corrections is determined. The first and second inter-
action correction approximations are compared for each balance component and if they
agree with a specified tolerance, then the latter corrections are subtracted from the
force and moment approximations and the balance data reduction is complete. If these
two approximations do not agree within the given tolerance, then the latter interaction
corrections are subtracted from the force and moment approximations from equation (A2)
and these values are reiterated into equation (A1) until convergence occurs for all balance
components,

19



APPENDIX B

CONVERGENCE OF ITERATIVE SOLUTIONS

In order to develop a criterion for the convergence of the system of nonlinear bal-

ance equations, it will be convenient to use vector notation.

The coordinates of the point

(FN’ F,, My, Mg, My, F ) can be represented by the column vector F or

Fy

It is also convenient to denote a column vector with elements of fl’ fz, .

1(F F,, My, My, M, FY)

fy (Fx» For My, My, My, Fy)

Y’ X!

Equation (B1) can thusly be written as follows:

F = 1(F)

fG(FN,FA,M My, M, F)_

(B1)

., fg as (F).

(B2)

By using this notation, the following theorem given by Henrici (ref. 4) can be applied to
the force-balance equations or to equation (5):

Theorem. Let R denote the region with limits a; and bi

20



APPENDIX B — Continued

and let the functions { satisfy the following conditions:

(a) fl, fZ’ C ey f6 are defined and continuous on R.
(b) For each F € R, the point fl(F), f2(F), C ey f6(F) also lies in R.

(c) There exists a constant L <1 such that for any two points F, and F,
in R, the following inequality holds:

| £(F1) - £(Fp)| =L || Fy - 72| (B3)

where the double bars denote the Euclidean norm. Then the following statements are

true:

(a) Equation (B2) has precisely one solution S in R.

(b) For any choice of F, in R, the limit of the iterative solution described or
Fn =£(Fn_1) is defined and converges to the unique solution 8.

(c) For any n=1, 2, .. ., the following inequality holds:
Lo
|%n - 8] =5 L”Fl - Fo| (B4)
It can easily be shown that the expressions of £ fz, R f6 satisfy conditions (a)

and (b). Let the region R be bounded by 1.5 times the minimum and maximum loads

for which a balance is designed to measure. The 1.5 factor is necessary as interaction
effects can cause the first approximations to be outside of the design load region. Now
consider f1 expanded as follows:

2

2
fl(FN, Fa, My, My, M, FY) = (FN)1 + 01’7(FN) +Cy gFNFpA+- -+ 01’27(FY) ®5)

where (FN) is the first approximation of normal force or the first element of
1

Cl'1 is constant. It is obvious that fl is con-

F,. For agiven data point ©,, (FN)

1
tinuous in R asare f,, ..., fg (ref. 6), and by virtue of equations (B1) and (B5), con-

dition (b) also is satisfied.

In order to establish that condition (c) is satisfied by the second-degree expressions
fy, f2, C ey f6, the Lipschitz constant L must be evaluated or a maximum for its value
must be established. Henrici (ref. 4) has developed a criterion for determining the bound
of the Lipschitz constant, which is given in the following theorem:
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APPENDIX B — Continued

Let the functions fl, fz, C ey f6 have continuous partial derivatives in the
region R as defined. Then, the inequality (B3) holds with L = J, where

ot, \2 [0ty \2 of. \2 ot \2
J= max \[|l—=—) +|—==—] + =21 . | — i
F e R| \?FN 0Fp 0X; oFy j

The limiting value of J is calculated rather straightforwardly by taking the par-

20 8) B9

tial derivatives of the balance equations and evaluating the maximum possible value of
of
1,

each term as follows for :
Fy

af

1 _
BTy 2¢q qFy+ Cq gFp+ g gMy + g 1My + €1 11M7z * ¢4 12Fy (B7)
Each term on the right-hand side of equation (B7) is evaluated at 1.5 times the maximum
design load, and the absolute values of these products are summed. This method of
evaluation is carried out for each partial derivative in equation (B6) and results in an
upper bound for J or

o, \2 ot \2 of, \ ptg \2
(5-1?— +ﬁ‘_ I ...+ (B8)
N/max A/ max °X; |max oFy max .

A computer subroutine program which calculates the upper bound for J is listed.
This program assumes that the C1'1C2 product array is stored in M and that the

-
A

design'loads are stored in a one-dimension array B. The maximums of the partial
derivatives are computed as indicated above and stored in the 6 X 6 array A from
which the upper bound for J is calculated in accordance with equation (B8). The

1.5 factor is not applied in this subroutine but should be considered when interpreting the
result of this evaluation. In practice this factor can be varied depending on the size of
the interactions on the balance.

Because this upper limit of the Lipschitz constant is dependent only on the inter-
action coefficients and the design loads of a balance, it can be evaluated prior to the use
of a balance in a wind-tunnel application. It is convenient to determine the bound of this
constant at the same time the interaction coefficients are evaluated.
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APPENDIX B — Concluded

SUBROUTINE LPSHZ(M.B,I1BAL.IDATE)

DIMENSION M(6421) B(6K) )

THE yALUES OF REQUIRED PARTIAL DERIVATIVES wILL BE EVALUATED FROM
THE OESIGN LOADS STORED IN B AND THE SECOND-ORDER INTERACTIONS
STORED IN Me THE PARTIAL DERIVATIVES wILL BE STORED IN A AND THE
LIPSCHITZ CONSTANT STORED IN ALIP. IBAL AND IDATE ARE THE
BALANCE NAME AND CALIBRATION DATE RESPECTIVELY IN DISPLAY CODE.

DO 1n I=146
Allog)x (ABS(2.%#M(T+1)1%#B(1))+ABS(M (1 +2)%B(2))+ABSIM(1+31%8(3))+

ABS( M(1+4)%B(4)1I+ABS(M(1+5)%B(5))I+ABS(M(1.6)%B(6)))
A(la2)s (ABT(2.%M(147)%#B(2))1+ABS(M(1,+2)1%B(1))+ABS(M(1,.,8)1%¥B(3)1+
ABS( M(140)*B(4))I+ABS(M(1+10)%¥B(1))+ABS(M(1+1131BS(6)))

Alle)= (ABS(2.¥M{1412)%B(3))1+ABS(M(1+ 3)¥B(1))+ABS(M (1, 8I¥*B(2))+
ABS(M(I1+13)%B(4))1+ABS(M(1,14)%*B(5))+
ABS(M(1+15)%B(6)))

Allea)z (ABS(2.%M([+16)%#B(4))+ABS(M(Te 4)*¥B(1))I+ABS(M(1,s 9)1*B(2))1+
ABS(M{T+13)%¥B(3))I+ABS(M(1417)%¥B(5))+
ABS(M(1+18)%B(6)))

Allem)= (ABS(2.%M(1+19)1%#B(5))+ABS(M(1+ S)IXB(11)1+ABS(M(1410)*B(2))1+
ABS(M(T+18)%B{3))1+ABS(M(1+17)%B(4a))+
ABS(M(1.20)%B(6)))

Alleg)= (ABC(2.*M (1421 )%B(S)I+ABS(M(1+61%S81))+ABS(BMI,11)%SB2))+
ABS (M(1+1S)%B(3))+ABS(M(1+18)1%B(4))+

ABS(M(1.20)Y%B(5)))
CONT INUE
CALCUALTION OF LIPSCHITZ CONSTANT, ALIP
ALIP=0e0

DO 20 L=1+36

AL IP=ALIP+A (L )##R2

CONT INUE

ALIPaSQRT (AL IP)

PRINT 15+,1BAL +IDATE

FORMAT (1MY e/ /77777 7% RALANCE #eA10+% DATE *,A10)

PRINT 16

FORMAT(1HO«* THE FOLLOWING ARRAY CONTAINS THE PARTIAL DERIVATIVES
OF x(J) WITH RESPECT TO X(1)+*/% WHERE (1) DESIGNATES THE ROW AND

2 (JY DESIGNATES THE COLUMN.#*///)

PRINT '17+A

FORMAT (1HO+6 (2XeF10e6) /)

PRINT 184ALIP

FORMAT(1HO«% THE LIPSCHITZ CONSTANT FOR THIS BALANCE IS LESS THAN

SHF10e5)

RETURN
END
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APPENDIX C
BALANCE DATA REDUCTION SUBROUTINE PROGRAMS

The subroutine programs given in this appendix correct force-balance data for
interaction effects by applying the matrix methods discussed. Subroutine CTRNL calcu-
lates the initial load corrections necessary for determining second-order interactions on
a multicomponent balance. Subroutine CINTR then corrects balance data for both first-
and second-order interactions, considering initial load effects where required. Provi-
sions are also included to account for one discontinuous interaction term, that is, an
interaction coefficient for which the value depends on whether a particular component's
load is positive or negative.

A flow chart of the subroutine CINTR follows. The listings of the two subroutine
programs CTRNL and CINTR along with the required matrix operations subroutines are
given with pertinent comments after the flow chart.
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APPENDIX C - Continued

Correct components
for first-order
interactions explicitly

!

Translate axes
to compensate for
initial loads

Option to consider
> one discontinuous
Jv interaction

Correct components
for second-order <
interactions iteratively

l

Translate axes back
to original system

|
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APPENDIX C - Continued

SUBROUTINE CINTR(FULFZ,EZ,LISTyF,1ER)

e ot ot g o e ool ok ook oK e ok o gk ok ok ko o o K ok ke o ok o ok o o ook ok ik ke ok o ok o o ok ok ok ok ok okok

CINTR

PURPOSE

LANGUACE

USACE

FU
FZ
€z
LIST

£
{ER

IBAL
IDATE
KDATE
M
NAMEC
ITASK

IORCR

ITRML

IPLLS

MINUS

NTRY

EIE IR B IR BN BE R BE BF K AR BE N B IR K R IR JE BE IR BE SR B B BE R R R EE IR IR IR R IR IR 2 2R K Sk BE BE B R R B BE BEC R BE NE N BE N E R 2 R 2R

SUBROUTINE

CORRECT MULTI-COMPONENT STRAIN GAGE BALANCE
RECCRLCINCGS FOR 1ST AND 2ND ORDER INTERACTIONS

ASSUMPTICN
THE BALANCE RECORDINGS HAVE BEEN CONVERTED

TO ENGINEERING UNITS. THAT IS, TUNNEL PRIME
SENSITIVITIES HAVE ALREADY BEEN APPLIED

FCRTRAN 2 OR 4
DEF INE INPUT COMMON PARAMETERS

CALL CINTR(FUFZyEZsLISTyF,IER)

DESCRIPTICN OF INPUT CALLING SEQUENCE PARAMETERS

DESCRIFTIGN OF OUTPUT CALLING SEQUENCE PARAMETERS

DESCRIPTICN OF INPUT COMMON PARAME TERS

UNCORRECTED COMPONENTS, ENGINEERING UNITS

CCRRECT INITIAL LOADS, DETERMINED ITERATIVELY

2ND ORDER INTERACTION DUE TO CORRECT INITIAL LOADS

PRINT OPTION TO DISPLAY THE PATTERN OF CONVERGENCE
LIST=0 DO NOT PRINT CCMPONENTS PER ITERATION
OTHERWISE, LIST IS THE LOGICAL UNIT NUMBER

CCMPCNENTS CORRECTED FOR INTERACTIDNS

ERROR INDICATOR FOR INTERACTION CONVERGENCE
[ER=0 INTERACTIONS CONVERGED
IER=1 INTERACTIONS DID NOT CONVERGE

BALANCE NAME IN DISPLAY CODE

EACH BALANCE HAS BEEN ASSIGNED A UNIQUE NAME
CALIBRATION DATE IN DISPLAY CODE

MCNTH/DAY/YEAR XX/YY/LL

CALIBRATION DATE EXPRESSED AS AN INTEGER
YEAR*10000+MONTH*100+DAY  ZZIXXYY

NUMBER OF BALANCE COMPONENTS PHYSICALLY DEFINED

M IS GREATER THAN 0, BUT LESS THAN OR EQUAL TO 6
ARRAY OF M COMPONENT NAMES IN A2 DISPLAY CODE

ALL MATRICES MUST BE ARRANGED ACCORDING TO NAMEC
INTEGER CODE SPECIFYING A TASK OR NIN2 TYPE BALANCE
ALL MATRICES MUST BE CONSISTENT WITH THE CALIBRATION
ORDER OF THE BALANCE CAL IBRATION

ICRDR=0 NO INTERACTIONS

ICRDR=1 1ST ORDER INTERACTIONS ONLY

ICRDR=2 1ST AND 2ND ORDER INTERACTIONS

OPTION TO TRANSLATE INTERACTIONS FOR INITIAL LOADS
ITRNL=0 DO NOT TRANSLATE FOR INITIAL LOADS
ITRNL=1 DO TRANSLATE FOR INITIAL LOADS

CPTICN FOR ONE 2ND ORDER DISCONTINUOUS INTERACTION
IPLUS=0 NO OISCONTINUOUS INTERACTION TERM
OTHERWISE, NAMEC(IPLUS) IS THE ACTING COMPONENT
INDEX IN C1IC2 TO ACCOMMODATE DISCONTINUITY
NCTE,ONE 2ND ORDER TERM CHANGES ONE COLUMN OF ClIC2 *
MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR CONVERGENCEX
AN ERROR FLAG IS SET, IF NTRY IS INSUFFICIENT *

I R R A I I I SN B S N N B N R EE N R R IR N N N AR N ERTE N ONE B OB EE 2R 2R SR BE B A B BF ONE SR 3R IR BE K LK R I
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clice

cpns
CNEG
PRCNT
CSENS
ACCUR

APPENDIX C - Continued

INVERSE OF NORMALIZED 1ST ORDER INTERACTIONS WITH *
MAIN DIAGONAL ELEMENTS OF 1. CONTAINS M%*M ELEMENTS =
PRODUCT OF C11 AND NORMALIZED 2ND ORDER INTERACTIONS*
CCNTAINS M*N ELEMENTS, WHERE N=M(M+1)/2 *
ARRAY OF M POSITIVE CALIBRATION CONSTANTS

ARRAY OF M NEGATIVE CALIBRATION CONSTANTS

PERCENT ACCURACY REQUIRED FOR CONVERGENCE

ARRAY OF M CALIBRATION PRIME SENSITIVITIES

ARRAY OF M COMPONENTS REPRESENTING THE ACCURACY

CF THE RECORDING SYSTEM, USED TO ESTABLISH THE
INTERACTION CONVERGENCE CRITERIA. IT IS ASSUMED

THAT ALL ELEMENTS OF ACCUR ARE GREATER THAN O.

BALANCE INTERACTION HISTORY FILE
THE INPUT CCMMON PARAMETERS RESIDE ON A BALANCE
INTERACTICN HISTORY FiLE. THC FILE CONSISTS OF A
PAIR OF RECORDS FOR EACH BALANCE. THE FIRST RECORD
OF EACH PAIR CONTAINS THE ORIGINAL CALIBRATION MATRIX
Ctle2).
WHICH CCNTAINS THE INVERSELY DERIVED MATRICES C1lI(36)
AND Cl1IC2(126)

REMARKS

THIS SUBROUTINE USES THE SECOND RECORD,

THIS SUBROUTINE IS DESIGNED IN SUCH A WAY THAT ALL
COMFONENT AND CALIBRATION MATKICES COULD BE COLLAPSED
TO CNLY THOSE COMPONENTS THAT ARE ACTUALLY HJIOKED uP

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

GMECF
GMACLF
GM<BF

TESTF

GMSTF
MATAS

METHOD

ECUATES TwWO MATRICES
ACOS TWO MATRICES
SUBTRACTS TwWO MATRICES
MULTIPLIES TWO MATRICES

SETS A MATRIX EQUAL TO A SCALAR
MULTIPLIES A MATRIX BY ITS TRANSPOSE AND STORES
THE UPPER TRIANGLE OF THE PRODUCY 1-DIMENSIONALLY

DETERMINING CORRECT COMPONENTS F IS VIEWED AS AN
ITERATIVE SOLUTIDN TO THE FOLLOWING MATRIX EQUATION

F = ClI X FU - C1IC2 X F2
(Mel) (MyM) (Myl) (MyN) (N,1)

WHERE F2 IS ALL PRODUCT COMBIMATIONS OF £ AND N=M(M+1)/2
LETTING EPSI = ClIC2 X F2 THE ITERATIVE TECHNIQUE FOLLOWS

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

®

*

*

*

*

*

*

*

*

*

*

* GMP XF
*

*

*

*

*

*

*

*

®

*

*

*

*

x

*

*

*

* F
* F
* F
* .
* .
. L]
* U
*

*

*

*

APPROXIMATION RESULTS ERROR

ClI X FU = EPSI EPS1
ClI X FU - EPS2 EPS2-EPSL
EPS2 CllI X FU - EPS3 EPS3-EPS2

Cll X FU
Cl! X FU - EPSI
Clt X FU

NTIL ABSOLUTEU(EPS(I)I-EPS(I-1)) < ABSOLUTE(ACCUR)

*
*
*
*
*
*
*
%
*
*
*
*
*
*
*
*
*
*
*
x
*
%
*
*
*
*
*
*
CCMPARES TWO MATRICES *
*
*
*
*
*
*
*
x
*
*
&
*
*
*
*
Y
*
*
*
*
*
x
*
*
FOn ALL COMPONENTS *
*

*

Rk kR dok kR ol ok ok ok o ko % ok ok ke ok ok kool ool ok ook ok ok ko ok

DIMENSION FUL6),FIZI6),EL(6),F(6]

DATA 1270/
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APPENDIX C — Continued

e ® $ 4 E 00 66 8 S P00 0C000RICPEPRRCEERCCEEENROCEEECEOCERSEENOCEEEETETSIOISOBIBIAEENASGTOISISIOTOIOTRSIESITDTISTS

.INPUTS FRC¥ THE BALANCE INTERACTION HISTORY FILE .

COMMON/BAL/
1IBAL, ICATE,KCATE ,MyNAMEC (6) s ITASK, IORDR, I TRNL +IPLUS yMINUS,NTRY,
2CL1(36),CLIC2(1263,CPOS(6)yCNEGI6)PRCNT,CSENSL6),ACCUR(G)

€9 0080 89 6880 008080000000 00C0000CEOBCECICEEIOERDBENSPSESESISEEOITINIOITSIOESIINRDTOEIOTOIOESS

.WORKING STORAGE AREA AVAILABLE TO ALL SUBPROGRAMS

COMMON/WORK/
INyF2(21) +EPST(6)EPSO(6)4DELTA(6)y 19y ICNVG

«NO INTERACTICNS, NOT NECESSARY TO CORRECT COMPONENTS .

TER=0
IF(IORDR) 20,410,420

06 00 8 0P EN PSP SPCEROTNVEREEETE 0000 O0000REE0EENLOSSSNSGSISTPOIOIOSRSISISTDS

.SET CCRRECTED EQUAL TO UNCORRECTED AND RETURN . .

10 CALL CMEQF(FUsF M)
GC YC 200

S 2 E P P S PG 0 S EITVCRN S NE00 0000 P0CO PP ENIO OGBSOV ISBSIISS SEOOCGEPEnssse

+CORRECT CCMFCNENTS FOR 1ST ORDER INTERACTIONS EXPLICITLY

AP Y Y P Y NN PR R R R RN RN AN L R R R R A R AL A AN R AR LA AL A

20 CALL GMPXF(CLIsFU,FsMyMy1l)

«THIS IS THE FIRST APPROXIMATION FOR 2ND ORDER CORRECTIONS .

IFCICRCR-1) 30,200,330
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APPENDIX C - Continued

A RA SRS SRR AR L EE R R R R R A B R R R R I N R R

«<OPTION T0 TRANSLATE AXES, COMPENSATING FOR INITIAL LOADS .

30 IFLITRNL) 50,40,50

40

50

«TRANSLATICON NOT NECESSARY, INITIALIZE EPSILON TO ZERO .

S OBB 2B EBCINITORENRIC 000000 0CE00CCTFCOICOEIVIOIOPOIVOERDPE IO RGOEROONORS

CALL CMSTF(EPSQO,40.4M)
GO TC 60

«TRANSLATICN NECESSARY,ADD INITIAL LOADS TO 1ST APPROXIMATION.

BB OD 4400000000000 000 000080 IRIITRITAESNOEECEOICEORIOCOEROTRELSIATROIOETDNRScCEAEUVAEOTSTAGSES

CALL GMACF(FFZyFyM)

IR A LR RN R R R R R N NN R RN R N R RN NN R R RN

<INITIALIZE EPSILON TO 2ND ORDER INTERACTION ON INITIAL LOAODS.

CALL CMEQF{EZ,EPSO,M)

5 0002 T EPCEANIED O LINBLCOCODIOIPIPENE 2 E08 00 CI2VEPC0C0CECRCEOEIOVTOROCEROIOSISGETISEOIEOSTS

«OPTION TO HANDLE ONE DISCONTINUOUS 2ND ORDER INTERACTION TERM

€0 00 000000008000 00TCOIIONOETEINEN0E00CBIN0E00EC0E0A8000000B00COCEORINTES

.
.
-
.

60 IF(IPLUS) 17Cy»1CO,7C

70

IR RN N N R R R P RN R RN ERE N RN NN IR RN BN

«DETERMINE WHETHER TO USE POSITIVE CR NEGATIVE CALIBRATION .

IF(FUIPLLS)Y) B80,90,490

«SETYP TO USE INTERACTION TERM FROM NEGATIVE CALIBARTION.

IR RN RN RN R RN R RN N RN Y E RN R RN R R NN RN XX
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APPENDIX C - Continued

80 CALL GMEQF(CNEG,C1IC2(MINUS) M)
GC TC 100

 * 098 58860 000000000 E00EEIO00OLOEIOTNICEREIICTTITIISCEOEOTECEEOSIRDIBTIOIOEONIAEIOLIDNITDTES
.

:SETUP TO USE INTERACTION TERM FROM POSITIVE CALIBRATION.

e 006868 00ES0 e PG 0000000000 RNERsssOOOCTESENIOTIETOIRNOTRITOSTOTOTTOITS

90 CALL GMEQF(CPOS,ClIC2{MINUS) M}

0 0 0 0GP E P4 S CEISSEBPRINCPBOREEPIOOIOPNTIEPIRIOERNOCO SNV IPARISTIBAIADOISOEIOISTISIO

«PRINT OPTICN TO GISPLAY THE INTERACTION CONVERGENCE PATTERN ' .

100 IF(LIST) 11C,130,110

<ESTABLISKH FEADINGS OF ITERATION AND COMPONENT NAMES -

110 WRITE(LISTs111) (NAMEC(J)d=1sM)
111 FORMAT{1O0HOI TERATION 8X4A2,5(17XA2))

'FEYEREFT YRS YRERSESRER R RSP RRERN SRR R R EE RN RN RS LA S A AR LA

«PRINT FIRST APPROXIMATION DEEMED ITERATION NUMBER O -

WRITE(LIST,120) [Zy(F(J}yd=1sM)
120 FORMAT(164+6E19.6)

090 0009 000 40000 CENENCEINECEOIINOOO0OEL0EBTPICGEI ISP ISSSTOOSIIISIOIOITSIAETS
-

«CORRECT CCMPCNENTS FOR 2ND ORDER INTERACTIONS ITERATIVELY

B0 P S C IR PG N NI IDRC OO PP IV IRG SO RNENP LG ETES 05000 EP RGPS IS SB OB SSIERES

130 DO 170 I=1,NTRY

.COMPUTE ALL PRODUCT COMBINATIONS OF THIS APPROXIMATION .

® 080 0 080T GRN0I TG0 00000 BIORETIBIIP TIPS SISIBISOTIOSIOSOEIBTSOIRTDS
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150

APPENDIX C — Continued

CALL MATAS(F4MsF2,N)

(AR X R R E I N R EE R R R R R RN R ERIRE RN EEE RN EIE I IR IR IR R I I ARy

.COMPLTE 2ND CRDER INTERACTION DUE TO THIS APPROX IMATION

B 050G 200000000V TN TRENINDNECOITNCEE0OPPITIITLEISNNOISTOEBDROOISIENIROOUEUETDRAETS

CALL CMPXF(CLIC2,F2,EPSIsMyN,1)

(R R R N AL A R R N RN N NNy NN R YRR NI AW N Y

+CCMPLTE ERROR IN THIS APPROXIMATION OF CORRECTED COMPONENTS

(AR NN RN RN R N N NN RN NN EEE YR TR I IR WY

CALL CGMSBF(EPSILEPSO,DELTAM)

(A RN RERE LR R R R Y R RN R N RN RN IR R R RN REE N RN EREE NI N

~COMPLTE NEXT APPROXIMATION OF THE CORRECTED COMPONENTS

R R RN I N Y PR RN R EE R YERE RN RE R I WY

CALL GMSBF(F,DELTA4F,M)

® 0 05 9 000 IEENTCETBC0CCINDGCIEIT G0 EC T S92 0ECEERISIITEOROEOSEORAROCEDROSEEODREEIENRSE

«PRINT CPTION 7O DISPLAY TOTAL LOADS PER ITERATION

.

R N R A N R R R RN R Y R N N L EET N RN R IR RN

IF(LIST) 140,150,140
WRITE(LIST,120) I+(F(J)sd=1yM)

® 080 0 0 CENECE NN N ED G P G000 0 0C00EINNVEECsSNSOSONIOOEITROOETDLTS

«DEMAND SIMULTANEQUS CONVERGENCE OF ALL COMPONENTS

LR N LI R RN R R Y R R NS N R RN EREER R NN

CALL TESTF{OELTA,ACCURy M, ICNVG)

LR R R N R Y N R R R YRR FEERR R ENR RN

«DID INTERACTICONS CONVERGE TO WITHIN A PRESCRIBED ACCURACY

(R R RN RN R R R R Y RN RN R I R P N R RN RN RN IRIR NN

IF(ICNVC) 180,160,180

9000800 0P 0000000003000 0R808CNINIEERNSLSSERNREARAsIRIgIOOGRRITISITS

«NCy» SAVE RESULTS OF THIS ITERATION AND TRY AGAIN OR

[ R R R R Y R N N N RN R R REER N NN

-
.
.
.

¢ o & o @
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APPENDIX C - Continued

160 CALL GMEQF(EPSI,EPSO,M}

.1F MAXIMUM TRYS EXCEEDED, SET ERROR FLAG AND RETURN -

8 000 0000020000 EPCEI0PETCEEE STV TENIGINEID SS90 000s000s

170 CCNTINUE
1ER=1

080 £ 008 89 9 5 0 TP 0EB 0000000020000 0C0D2CEINIEINBEPCGEICCEAERIGISIOSEBIIOGOBROOSIOBOITDRTS

«TRANSLATE AXES BACK TO ORIGINAL SYSTEM .

P ® 00 08 20 09990 P V0 CRVRCPI S CODOEVES VIV OISV ECOCITO LGS POOEOGROBOEODESES

180 IF(ITRNL) 1SC,200,190

@ P DD 2 9000060000000 00000080006000060CER00ICIGINSENOBLIECIOCGOGVSIORBOIOTRTRGSS

«SUBTRACT INITIAL LGADS FROM TOTAL LOADS -

. -

LR R Ry R R N R R N R R R A R RN RN RN N]

190 CALL CMSBF(F4FZyF4M)

© @ 09 00 0T RD PP P R0 CC AP CCV NG I SCEOEUITT LI OGISERDEN COSROOESOESIESES

«RETURN COMPONENTS CORRECTED FOR INTERACTIONS .

2 9 00 0 0E PV VNP 0D O CN VAV ITTI PN IETCEEDOER IS OB L0 E P 0sGEDOIOESIOPRORTGTE

200 RETLEN

END
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APPENDIX C — Continued

SUBROUTINE CTYENL(FZ,EZ2)

EREEEERKEEL IS ARSI R R R e R ARk Rk kR Rk Ak kxR kR Rk k&

SUBROUTINE
CTRAL

PURPOSE
COMFUTE 2ND CRDER [INTERACTION DUE TO INITIAL LOADS.
PROVICE INPUT TO SUBROUTINE CINTR FOR AXES TRANSLATION

LANGUACGE
FORTRAN 2 OR &

USACE
DEFINE INPUT COMMON PARAMETERS
CALL CTENL(FZ,EZ)

DESCRIPTICN OF INPUT CALLING SEQUENCE PARAMETER
FZ CORRECT INITIAL LOADS, DETERMINED ITERATIVELY

DESCRIPTICN OF QUTPUT CALLING SEQUENCE PARAMETER
(4 2ND CRDER INTERACTION DUE TO CORRECT INITIAL LOADS

THE INPUT CCMMON PARAMETERS RESIDE ON A BALANCE INTERACTION
HISTCRY FILE. SEE SUBROUTINE CINTR FOR A DESCRIPTION OF
THESE PARAMETERS

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
GMECF EQUATES TWO MATRICES
GMPXF MULTIPLIES TWO MATRICES
GMSTF SETS A MATRIX EQUAL TO A SCALAR
MATAS MULTIPLIES A MATRIX BY ITS TRANSPOSE AND STORES
THE UPPER TRIANGLE IN 1-DIMENSIONAL SYMMETRIC FORM

METHOD

FZ = ClI X FUZ - CLICZ2 X F2Z

WHERE UNCORRECTED INITIAL LOADS FUZ ARE NEVER
REALLY KNOWN ANO F2Z IS ALL PRODUCT COMBINATIONS
OF Fl. FOR THE PURPOSE OF TRANSLATING AXES IN

*

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* x
* *
* =
* *
* *
* *
* *
* *
* *
* REMARKS *
* *
* *
% *
* *
* *
« *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* SUBROUTINE CINTR IT IS SUFFICIENT TO KNOW FZ AND *
* EZ = C1IC2 X F2Z BY DEFINITION *
* *
* *

EREEEARAD L AR R DRI R R KRR EER AR RN KRR KRR KRN K AR K TRk KRk
DIMENSICN F2{6)4EZ2(6}

«INPUTS FRCM THE BALANCE INTERACTION HISTORY FILE .

SO W P CDEEOE U IGO0 00T TP CNESDED P ED GO OENIOEONBOOCTOORCSEISTS

COMMON/BAL/
1IBALyIDATEKCATE, ¥ NAMEC(6) 4 ITASK,IORDR,ITRNLyIPLUS yMINUS,NTRY,
2C11(36)+C11C2(126)+CPOS(6)+CNEG(6)+PRCNT,CSENS(6)+ACCUR(G)
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APPENDIX C — Continued

B B 0 0t 2 000 00t I 0 et 00t U iitcncriacinsesoinacesensasssscosssasnsasoe

-WORKING STORAGE AREA AVAILABLE TO ALL SUBPROGRAMS .

S O S e 0t 0 000ttt n ot NN raEN N el vl NarsiNereetssensonrsoscsssenscsssssee

COMMON/WORK/N,F22(21)

S 00000090 crNErrtrNt s t0t0ceatntnciontsanioncaesosscsconasocsonanse

«TRANSLATICN CNLY NECESSARY FOR 2ND ORDER INTERACTIONS .

hd .

G0 000 0000 0ttt 00 rl0rertrcioINet et ettt tiistticetestsnnessscssossssese

IF(IORDR=-2) 10,20,10

«OTHERWISE, SET INITIAL EPSILON TO ZERO T .

M A AR A LSRR LAl AR R R L E R R I R R R R Y

10 CALL GMSTF(EZy¢0.sM)
GO TC 100

S P e P 000 LN tr 0T IRt r 0000000008000 00000Aaascstscsvoncocsndcsccsass

<OPTION TC HANDLE ONE DISCONTINUGUS 2ND ORDER INTERACTION TERM .

- -

PO RS E P INTE I LD N 0P 0GEC00C000RECETI0S00E0 0 IIGERECIETIIRITERAIENRATERISIOBRITOCEETSS

20 IFLIPLUS) 30460,30

A A AN ERESEEEEEELEERERETRERER XN I N N R R R S Py

«DETERMINE WHETHER TO USE POSITIVE OR NEGATIVE CALIBRATION .

LA AR R R RS A AR ER S R R RS R N R Y I

30 IF(FZ(IPLLS)) 40450,50

LA A A R R A AR R R R EE R R NN N R NN R N N R I T T RN I Y YEY

«SETUP TO USE INTERACTION TERM FROM NEGATIVE CALIBRATION.

LA A A A A AR L R R R R A R R E RN NN RN N RN NN TN R I R N Y e

40 CALL GMEQF({CNEG,CLIC2{MINUS) M}
GC TC 60

090022 00000000 P0G RINCRC V8000080 IP S ECPRCIEED CLEC0OOESIOODS

-SETYUP TO USE INTERACTION TERM FROM POSITIVE CALIBRATION.

B 0 0000900080000 00000C0INIRINLINANVGENTIEOEBNROOIGCEOROIOCORGOTOROIBRAOITSTTSES

50 CALL GMEQF(CPOS,CLIC2(MINUS), M)}
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APPENDIX C - Continued

«COMPUTE ALL PRODUCT COMBINATIONS OF CORRECT INITIAL LOADS .

A ANARE R LR R R AR EEREREEREEE R R R N R N RN R R R YT

60 CALL MATASIFZ M,F2Z,4N)

-COMPUTE 2NC CRDER INTERACTIQON DUE TO CORRECT INITIAL LOADS .

B 0G0 S 008 98 000P NN TRCRNNECIONC L0 00T 0000 00 ERCOCOETISIPOENRIES S ACOORSESEISPSEES

CALL GMPXF(CL1IC24F2Z4EZyMyN,1l)

100 RETURN

END
SUBROUTINE GMEQF{A,R,MN)

AEAEREERE RN R ARG R R RN KRR RN AR A R AR R K E R R KRR KRRk k%

b 4
*  SUBROLTINE *
* GMECF *
* L]
*  PURPOSE *
* EQUATE CNE GENERAL MATRIX TO ANOTHER GENERAL MATRIX *
* *
*  LANGUAGE *
* FORTRAN 2 OR 4 *
* *
*  USAGE *
* CALL GMEQF (A,R,MN) *
* *
* DESCRIPTICN OF PARAMETERS *
* A INPUT MATRIX NAME *
* R OUTPUT MATRIX NAME *
* MN INPUT NUMBER OF ELEMENTS IN MATRIX A OR R *
* *
*  REMARKS *
* 1. THE ELEMENTS OF MATRIX A ARE NOT CHANGED. *
* 2. THE USER IS CAUTIONED,IF MATRICES A AND R ARE NOT FLOATING *

x POINT. FOR EXAMPLE, TWO INTEGER TO ONE FLOATING POINT WORD.*
* 3. SUBRCUTINE GMEQF CAN BE USED TO MANIPULATE MATRIX COLUMNS, *
* FOR EXAMPLE, SET MATRIX R{M,1) EQUAL TO THE JTH COLUMN OF =
* MATRIX A(MyN) BY CALL GMEQF(A(1lsJ)sRyM). *
* 4. SUBROUTINE GMEQF CANNOT BE EASILY USED TO MANIPULATE ROWS *
* DUE YO THE FACT THAT THE ELEMENTS OF A ROW ARE NOT HELD *
* CONSECLTIVELY IN CORE STORAGE. *
* *
* SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED *
* NONE *
* *
* METHOC *
* EACH ELEMENT OF MATRIX R IS SET EQUAL TO *
* THE CCRRESPCNCING ELEMENT OF MATRIX A *
* x
* R(TJI=A(1J) FOR lJ=142¢0..1MN *
* *
R KRS Rk b F Aok o ok ook ok ok ok ook o ko ook ok g ook okokok o o o R ok ok ok ok R ok ok
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APPENDIX C — Continued

EQUATE MATRICES

DIMENSICN A(1)}),RI(1)

D0

10 TJ=1eMN

R{TJ)I=ALTJ)
10 CONTINUE

RETURN

END

sus

ROUTINE GMACF({A,ByRyMN)}

REEEKEESR AN SRR R R kR Rk kkkh bk ek kR p kg ke kk Rk ke ok Rk kk ok k&

x
*
%
»
»”
-
*
*
*
*
*
*
*
*
»
*
*
*
*®
*
*
*
*
*
*
*
*
*
*
*
*®
*
*
*

DIM
DO
R{I
10 CON
RET
END

SUBROUTINE
GMACF

PURPQOSE

ADC TWC GENERAL MATRICES TO FORM RESULTANT GENERAL MATRIX

LANGUACE
FORTRAN 2 OR &

USAGE
CALL CMACF({A,ByRyMN)

DESCRIPTICN OF PARAMETERS

A INPUT FIRST MATRIX NAME

8 INPUT SECOND MATRIX NAME

R CSUTPUT MATRIX NAME

MN INPUT NUMBER OF ELEMENTS IN MATRIX A,8,0R R
REMARKS

MATRICES AsBy AND R MUST BE FLOATING POINT
MATRICES A,B, AND R MAY BE THE SAME LOCATIONS
OTHERWISE, THE ELEMENTS OF MATRICES A,B ARE NGOT CHANGED

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHCD
EACH ELEMENY OF MATRIX A IS ADOED TO THE CORRESPONDING
ELENMENT CF MATRIX B AND THE RESULT IS PLACED IN THE
CORRESPONDING ELEMENT OF MATRIX R

RI1JI=A(TIJI+B(IJ) FOR IJ=1y429eeerMN

AERRFRKEXN LR R RKR AR R Rk R R kR RERER KRR R Rk kR Rk R Rk Rk kR ok k kjokk X

ADD MATRICES

ENSION A(1),+B(1)4R(1)
10 1J=1,MN
JiI=ACTJ)+E (1Y)

TINUE

URN

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
=
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
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APPENDIX C - Continued

SUBROUTINE GMSBF(A,B,yRyMN)

AR L L R R R R It Ry T ey i

*
&
*
%
*
*
*
*
*
*
*
*
*
*
*
*
*
x
-

*
*
*
*
*
*
*
*
%
*
*
x
*
*
*
*

SUBROUTINE
GMSEF

PURPOSE
SUBTRACT ONE GENERAL MATRIX FROM ANOTHER
TO FOFVM 2 RESULTANT GENERAL MATRIX

LANGUACGE
FORTRAN 2 OR 4

USAGE
CALL GMSEFU(A,ByRyMN)

DESCRIFTICN OF PARAMETERS

A INPUT NAME OF FIRST MATRIX

B INPUT NAME OF SECOND MATRIX

R CUTPUT MATRIX NAME

MN INPUT NUMBER OF ELEMENTS IN MATRIX A,B,0R R
REMARKS

MATRICES A+B, AND R MUST BE FLOATING POINT
MATRICES AsBs AND R MAY BE THE SAME LOCATIONS
OTHERWISE, THE ELEMENTS OF MATRICES A,B ARE NOT CHANGED

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
EACt+ ELEMENT OF MATRIX B [S SUBTRACTED FROM THE
CORRESPCNDING ELEMENT OF MATRIX A AND THE RESULT
IS PLACED IN THE CORRESPONDING ELEMENT OF MATRIX R

RILJI=ACTIJII-B(IJ) FOR IJ=1924..49MN

EREERRERD SRR R RN R EC R KA R R KRR R R KRRk Rk Rk kR kK kR ok

SUBTRACT MATRICES

DIMENSION A(1),B(1),R(1)
DO 10 IJ4=1,MA
RIIJI=A(TJ)=-B{1J)

10 CONTINUE
RETURN
END

*x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
x
*
®
*
*
*
*
*
-
*
*
®
*
*
*
*
*
*
*
*
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APPENDIX C - Continued
SUBROUTINE GMPXF(A,B,R,MyNyL)
B e T T T i L TR R P LS L L L L s e Rt S Lt i d e d b

SUBROUTINE
GMPXF

PURPOSE
MULTIPLY TWO GENERAL MATRICES
TO FORM A RESULTANT GENERAL MATRIX

LANGUACE
FORTRAN 2 DR 4

USACE
CALL GMPXF{A,ByRyMsNyL)

DESCRIPTICN OF PARAMETERS

A INPUT FIRST MATRIX NAME

B INPUT SECOND MATRIX NAME

R OUTPUT MATRIX NAME

M INPUT NUMBER OF ROWS IN MATRIX A OR R

N INPUT NUMBER OF COLUMNS IN A AND ROWS IN B

L INPLT NUMBER OF COLUMNS IN MATRIX B OR R
REMARKS

ALL MATRICES MUST BE STORED IN FLOATING POINY

A ANC R MUST BE CONFORMABLE FOR MATRIX MULTIPLICATION

A ANC B MAY BE THE SAME MATRIX If 1T IS SQUARE

MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX A OR 8
THE ELENENTS OF MATRICES A AND B ARE NOT CHANGED

*
*
*
*
*
*
®
*
*
*
*
*
*
*
*
*
*
*
%
*
*
*
x
*
*

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NCNE

*
*
*
*
*
*
METHCD *
THE M BRY N MATRIX A IS POSTMULTIPLIED BY THE N B8Y L *
MATRIX B AND THE RESULT IS STORED IN THE M BY L MATRIX Re *

*

*

*

™

*

*

*
*
*
*
*
*
*
*
*
*
™
*
*
*
-
*
*
E 3
%
*
*
*
*
%
*
%*
*
*
*
*
*
*
=
*
*
* FCR A GIVEN ROW I AND COLUMN J,

* R{T,J)=THE SUMMATION FROM K=192re¢e 4N
* CF THE PRODUCTS A{I,K)*B(K,J}

*

*

AR A AR SRRk Rk Rk R RO KR Rk ROk AR Rk KRRk Rk k%
MULTIPLY MATRICES

DIMENSION A(1),8(1)4R(1)
IR=0

IK==N

DO 30 K=1,L

IK=TK+N

DO 20 J=1l.¥

IR=IR+1

Ji=J-M

I18=1K

R{IR}=0.

00 10 I=1.N

JI=JI+M

18=1I8+1
RUIRI=R{IRI+A{JI)I*B(IB)
CONTINUE

CONTINUE

CONTINUE

RETURN

END
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APPENDIX C — Continued

ROUTINE TESTF(A,ByMN,LE)

Rk kkdh bk Rk Rk ok kR Rk kK ek Rk ko pdokokkk ok ok ko ok Rk ok ko ko

*
*
*
*
%*
*
*
*
*
*
*
*
x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

DIM
LE=
DO

IF(
CON
LE=
RET
END

SUBROUTINE
TESTF

PURPOSE
TEST THE ABSOLUTE VALUE OF EACH ELEMENT OF MATRIX A TO

DETERMINE IFf IT IS LESS THAN OR EQUAL TO THE CORRESPONDING

ELEMENT CF MATRIX B

LANGUACE
FORTRAN 2 OR 4

USAGE
CALL TESTF{A,84MN,LE)

DESCRIPTICN OF PARAMETERS

A INPUT FIRST MATRIX NAME

B INPUT SECOND MATRIX NAME

MN INPUT NUMBER OF ELEMENTS IN MATRIX A DR B

LE CUTPUT COMPARISON OF MATRICES A AND B
REMARKS

LE=C IFf THE ABSOLUTE VALUE OF AT LEAST ONE ELEMENT IN
MATRIX A [S GREATER THAN THE VALUE OF THE CORRESPONDING
ELEMENT IN MATRIX B. OTHERWISE, LE=]

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NCNE

METHOC
IF 1A(IJ)1 LESS THAN OR EQUAL TO B(I1J}
FOR ALL TJ=1l429...9MN THEN LE=1
GTHERWISE, LE=0

Rk rd kL AN SRRk ke ko ko ko ko ok ok ok ok ko ko

COMPARE MATRICES

ENSION A(1}),8(1)

0

10 1J=1,MN
ABS(A(TJ))-B{II)]} 10,10,20
TINUE

1

URN

*
*
x
*
%«
*
*
*
*
%*
*
*
*®
&
#*
*
*
*
*
*
x
*
*«
*
*
*
*
*®
*
*
*
x
*
&
*
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APPENDIX C - Continued

SUBROUTINE CMSTF(R,SyMN)

(SRS 2222 RERERRES R S22 RS 22222t i s Y]

*  SUBROUTINE *
* GMSTF *
* *
*  PURPOSE *
* SET ALL ELEMENTS OF A GENERAL MATRIX EQUAL TO A SCALAR *
* *
*  LANGUACE *
* FORTRAN 2 OR 4 *
* *
*  USACE *
* CALL GMSTF(R,S,MN) *
* %
*  DESCRIPTICN OF PARAMETERS *
* R OUTPUT MATRIX NAME *
* S INPUT SCALAR CONSTANT *
* MN INPUT NUMBER OF ELEMENTS IN MATRIX R *
* *
*  REMARKS *
* ALL VARIBBLES SHOULD BE FLOATING POINT *
* *
*  SUBROLTINES AND FUNCTION SUBPROGRAMS REQUIRED *
* NONE *
* *
*  METHOD *
* SET EACH ELEMENT OF MATRIX R EQUAL TO THE SCALAR S *
* *
* RI1J)=S FOR ALL IJ=1y2y0eesMN *
* *
0o 2l ok o e o e o o ook otk ok ok ol o o ok Kk ko ok ook o ok o kol e ok ool ol ol e ok ok ko Kok ok e ok o ok o ok ok ok

SET EACK ELEMENT OF MATRIX R EQUAL TO THE SCALAR S

DIMENSIGN F(1)
00 10 IJ=14MAN
R{IJ}=S
CONTINUE
RETURN

END
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APPENDIX C — Continued

SUBROUTINE MATAS{A,M,R,N)

T ke o g ok o ok ok ok o o R ok e e K ok ol ok o ok i ok Ok ok ek ok o ol ko ok ko o ok koK ok ok ok ok ok

PURPQOSE

x
3

POSTNMULTIPLY A COLUMN MATRIX BY ITS TRANSPOSE AND STORE THE*
UPPER TRIANGLE OF THE RESULTANT MATRIX IN SYMMETRIC FORM

LANGUACGE
FORTRAN 2 QR 4

USAGE
CALL MATAS{A,M,R,N)

DESCRIPTICN OF PARAMETERS
A INPUT MATRIX NA

INPUT NUMBER OF ELEMENTS IN MATRIX A

M
R CUTPUT MATRIX N
N

ME

AME

CUTPUT NUMBER OF ELEMENTS IN MATRIX R

*

*

*

3

*

*

E 3

*

*

*

X

*

*

*

*

*

*  EXAMPLE 1-1  1-
* INL X IN A PR Y
* 1a1 1-

* 1P1 (1,
* 11

* 1v1

* 151

* 1-1

* (€,1)

*
*®
*
*
*x
*
*®
x
*
*
*
*
¥*

WHERE A =

M=6,

REMARK S

-1 1-
S1 = INN NA NP NR NY
-1 1 AA AP AR AY
6) PP PR PY
RR RY

Yy

-1

-1
NS1
AS1
PS1
RS1
¥S1
SS1

-1

IN1 (646)

1A1
1P1
1R1
1rv1l
151
-1

N=21

1=--1
= 1NNl = R
1NAL
INP 1
INR1
INY 1
INS1
1AA1l
1AP1
1AR1
1AY1
1AS1
1PP1
1PR1
1PY1
1Ps1
1RR 1
1RY1
1RS1
LYYl
1YS1
15S1
1--1
(2141)

LR AR I BRI BN IR N R A I I N I I N e R E R R I I Iy

l. THE RESULTANT NUMBER OF ELEMENTS IN MATRIX R IS N=M(M¢l)/2 =
Yy MATRIX A IS RESTRICTED TO 1 COLUMN*
3. MATRICES A AND R CANNOT SHARE THE SAME LOCATIONS

2. FOR CCMPLTER EFFICIENC

4o THE ELEMENTS OF MATRIX

A ARE NOT CHANGED

5. MATRIX R REPRESENTS ALL PRODUCT COMBINATIONS OF M ELEMENTS

FUNCTICNS AND SUBPROGRAMS

METHCO

REQUIRED

ANY MATRIX A(My,L) TIMES ITS TRANSPOSE AT(L,M)
)o THIS SUBROUTINE HAS RESTRICTED

L 7C 1. THE UPPER AND LOWER TRIANGLES OF MATRIX R ARE
CERTAIN APPLICATIONS REQUIRE

CNLY THE UPPER OR LOWER TRIANGLE STORED 1=-DIMENSIONALLY.
THE ABQOGVE EXAMPLE DEMONSTRATES THE 1-DIMENSIONAL ORDERING

SYMMETRIC MATRIX R{M, M

*
*

*

*

*

*

&

*

*

*

*

* NONE
*

*

*

*

*

* IMACES CF CNE ANOTHER.
®

*
*

*

EEREREREE R GA R RO R R KKK AR R AR AR AR kAR Rk k Kk kR kR

RESULTS IN A

»

#*
*
*
*
*
x
*
*
*
*
*
*
*
x
*
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APPENDIX C — Concluded

PERFORM THFE MATRIX OPERATION

DIMENSICN A(1),R{1)
N=0

DO 20 I=1,¥

DO 10 J=1,¥

N=N+1
RIN)=ACI)*A{Y)
CONTINUE

CONTINUE

RETURN

END
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